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Abstract
Electric vehicles (EVs) are important for most countries and regions that rely on imported energy. Unfortunately, slow 
recharge and improper deployment at charging stations have limited the widespread use of EVs. To improve the recharging 
speed of charging stations and optimize their deployment, we propose a Minimized optimization Deployment algorithm 
based on EV Dynamic Changes (MDDC) to optimize the deployment of eXtremely Fast Charging (XFC) stations. The 
method selects multiple EV distribution maps to simulate EV movement and utilizes a grid partitioning method to divide the 
deployment area. To reduce the deployment scope of XFC stations, the grids with small and stable EV numbers variance are 
excluded from service areas. Then, we design the minimum required XFC station optimization function to achieve coverage 
for all EVs. Three optimization rules are designed to reduce the overlapping coverage of XFC stations, which minimizes 
the number of XFC stations. Finally, we use an efficient and accurate method named Minimum dIstance Sum of Unique 
Public area location (MISUP) in MDDC to redetermine the deployment location of XFC stations. We verify the rationality, 
effectiveness, and robustness of MDDC through extensive simulations, and the results show that the MDDC outperforms 
the comparison algorithm by 54.2% and 52.0% when using the Euclidean algorithm and the A-star algorithm, respectively.

Keywords Electric vehicle · Extremely fast-charging station · Facility deployment · Charging infrastructure · Planning

1 Introduction

Fossil fuels are nonrenewable energy sources that play a 
vital role in the development of cities. Unfortunately, these 
energy sources will eventually run out over time [1, 2]. 
Most countries and regions that rely on imported fossil fuels 

have an urgency to find alternative energy sources. Elec-
tricity is a renewable energy source with clean characteris-
tics, so it is considered the most ideal alternative to fossil 
fuels. Transportation using electricity as an energy source 
is becoming more and more popular, especially Electric 
Vehicles (EVs). As far as we know, EVs can reduce emis-
sions that cause climate change and smog, thus achieving 
the goal of improving the environment and public health 
[3]. Therefore, replacing internal combustion engine vehi-
cles with EVs in traditional transportation networks has 
gradually become a new trend [4–6]. The EV Charging Sta-
tion (EVCS or CS) plays an important role in the operation 
and development of EVs [7]. However, the traditional CS 
(i.e., fast charging (< 150 kW)) diverges between the time 
required to fully charge the EVs and the needs of the EV 
user, which severely limits the widespread use of EVs [8, 
9]. Recently, the industry has addressed the slow charging 
problem of EVs with eXtremely Fast Charging (XFC) (> 
350 kW) [10–12], which also known as ultra-fast direct-
current fast chargers, is currently not commercially avail-
able and is expected to become a standard configuration 
in the future [3]. The XFC station is an infrastructure that 
provides XFC services for EVs at CS.
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Compared with internal combustion engine vehicles, 
EVs will take longer to replenish energy at CS, but travel 
less. Due to the limited travel range, EVs may need to 
recharge batteries when users travel to far destinations. 
Therefore, users care about the convenience of EV charg-
ing very much, which plays an important role in the pro-
motion and popularization of EVs. CS owners have to 
install enough XFC stations for users. However, the large-
scale deployment of XFC stations will not only lead to 
higher land occupation rates but also increase the energy 
company’s investment costs and the burden of urban devel-
opment. Therefore, minimizing the number of required 
XFC stations is important for energy companies and gov-
ernments. After determining the number of XFC stations, 
how to deploy the XFC stations so that they can serve as 
many EVs as possible is an optimization problem.

The optimal deployment of charging stations has been 
a research topic in both industry and academia [13]. 
Researchers have conducted many studies in the field of 
EV charging station deployment based on different opti-
mization goals. Many works have analyzed from the per-
spectives of economic benefits [14–16] and grid factors 
[17–19]. Other works have typically focused on specific 
issues. For example, Zhao et al. [18] adopted a modified 
huff gravity-based model to describe the probabilistic 
patronizing behaviors of EV users. This work also formu-
lated a bilevel optimization model to decide the optimal 
site and size of the charging station. Luo et al. [20] mod-
eled the EV charging industry as an oligopolistic market. 
The best placement strategy is obtained through interac-
tion in Bayesian games without the size issue. Wang et al. 
[2] attempted to find the best path to charge a long working 
bus with and without considering a limited battery size. 
Similarly, Wu et al. [21] also designed a solution for the 
bus. However, it is still very important to study the deploy-
ment of charging stations.

In this paper, we study the deployment of charging sta-
tions from the perspective of EV data dynamics. To solve 
a low utilization rate, high initial investment cost, and high 
land occupation rate when deploying XFC stations, a Mini-
mized optimization Deployment algorithm based on EV 
Dynamic Changes (MDDC) is proposed. The main contri-
butions of our work are as follows:

• For the changing position of EVs, we first use multiple 
EV distribution maps to approximate the moving process 
of EV. Then, the grid partition method is used to divide 
the EV distribution map into multiple subgrids, and the 
average and the variance of EVs in the subgrid are cal-
culated. A type of grid with a larger average number of 
EVs and smaller variances are retained as key regions, 
thereby achieving large-scale coverage and high stability 
of key regions.

• The minimum required XFC station optimization func-
tion with a heuristic algorithm is designed to achieve 
coverage for all EVs in the service area of the XFC sta-
tion. According to the driving range of EVs, three opti-
mization rules in the same clique are designed to reduce 
overlap between the service areas to achieve the optimal 
deployment of the XFC stations.

• The MDDC method is proposed to minimize the num-
ber of required XFC stations for optimal deployment. 
To improve the utilization of the XFC station and user 
satisfaction, an efficient and accurate method named the 
Minimum dIstance Sum of Unique Public area location 
(MISUP) is designed in MDDC to redetermine the loca-
tion of the XFC stations. Additionally, we verify the 
validity and rationality of the MDDC and evaluate its 
performance.

The rest of this paper is organized as follows. Section 2 
describes the related work. Section 3 describes the method-
ology. Section 4 presents the simulation results. Section 5 
concludes the paper.

2  Related work

Over the past few years, with the reduction of nonrenewable 
energy sources such as fossil fuels, minerals, and nuclear 
fuels. An increasing number of countries and regions in the 
world have encouraged industrial [22–25] and academic 
circles [26–31] to find and use renewable energy sources 
(e.g., Singapore [1], Greece [8], and China [32]). The search 
for new renewable energy sources become a research topic 
of interest. EVs are often identified as the most promising 
technology to enable the decarbonization of transportation. 
Researchers have made many efforts to advance the use of 
EVs [30, 33]. However, solving the charging problem is the 
key to promoting EVs. Therefore, the deployment of the 
charging station is one of the most important topics worth 
studying. There are some works studying charging station 
placement with different views.

EV users play an important role in the deployment of 
the charging station. Zhu et al. [34] proposed a new model 
of plug-in electric vehicle charging station planning con-
sidering users’ daily travel patterns. The model aimed at 
the cost of the charging station and the user habits, which 
could simultaneously handle the problems of positioning the 
charging station and determining how many chargers should 
be established at each charging station. In addition, this work 
also studied the impact of different discount rates, charging 
station operating cycles, the number of electric vehicles, and 
the number of charging stations at the locations. Alhazmi 
et al. [35] considered both the trip success ratio and driv-
ing preferences in a model to enhance the accessibility of 
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plug-in electric vehicle CSs. The CS placement problem was 
transformed into a Maximum Covering Location Problem 
(MCLP) to determine the best deployment location for CSs. 
However, this work ignored the economic factors affecting 
the choice of CS. Li et al. [36] proposed and implemented a 
new algorithm for evaluating charging needs and planning 
new charging stations. In addition, modeling and analysis of 
charging-related search behaviors, navigation behaviors, and 
charging station usage patterns were performed. To evaluate 
the charging demand, a Bayesian inference algorithm was 
proposed to fuse these three behaviors. In addition, a flex-
ible objective function was proposed to serve existing EV 
users and attract more FFV users. Luo et al. [20] studied the 
multistage deployment of CSs based on the increase in EV 
penetration. A nested logit model was used to analyze the 
preferences of EV users to integrate the needs of each CS to 
achieve their optimal deployment. However, this work does 
not consider the size issue of CS.

In addition, the problem of solving the optimal deploy-
ment location of charging stations based on CS deploy-
ment costs, user costs, and grid costs has been widely 
studied. A method that can determine the location of the 
charging station and the optimal charging performance 
was proposed by Rajabi-Ghahnavieh et al. [37]. This work 
redefined the proposed problem as a Mixed-Integer Non-
linear Programming (MINLP) problem to reduce the total 
expected cost of EV charging. The charging demand and 
the expected cost of EV users were evaluated by consid-
ering user behavior. Then, the optimal CS deployment 
location was determined by zone division. However, this 
work did not consider the available space of the charging 
station before assigning candidate charging stations. The 
experiment in this work was carried out with a small area 
and a small number of EVs. We are still not sure whether 
the method would be effective in a large area with a large 
number of EVs. Moreover, this work did not fully consider 
the overlapping coverage between CS service scopes. Ge 
et al. [38] considered the network structure, distributed 
network system structure, and performance constraints 
in an optimization process. A weighted Voronoi diagram 
was used to divide the service area of the charging station 
while optimizing the performance of the charging station 
based on queuing theory. Finally, the optimal deployment 
of charging stations was achieved by minimizing total 
social benefits. However, the partition results were based 
on the initial EV distribution information, which cannot 
fully reflect the distribution of EVs. Sadeghi-Barzani 
et al. [39] proposed a mixed-integer nonlinear optimiza-
tion algorithm that considered the cost of deploying the 
charging station, the EV energy loss, the grid loss, the 
substation location, and the urban road network to deter-
mine the location of fast-charging stations. Genetic Algo-
rithm (GA) technology is used to solve these problems. 

In addition, the impact of the reliability of the power grid 
on the location of the charging station was evaluated by 
using the loss of charging cost. However, this work did not 
consider dynamic changes in EV location.

Other views were often studied. Andrenacci et al. [22] 
proposed a strategy for optimizing the charging infra-
structure of electric vehicles in urban areas. This strategy 
estimated the energy requirements of each sector from the 
perspective of the energy consumed by the equivalent EV 
fleet to reach the destination, which used data collected by 
traditional vehicles to solve the deployment optimization 
problem of EVCSs. However, the strategy did not consider 
city policies, distribution network conditions, and the poten-
tial location of the cluster centroid. He et al. [5] proposed a 
bilevel planning model that considered the driving range of 
an electric vehicle to find the optimal location of a charg-
ing station. However, the bilevel programming model was 
rarely applied to large networks due to its computational 
difficulty, and it was only suitable for testing on small net-
works. Similarly, Xiong et al. [1] also described the lay-
out of charging stations as a bilevel planning problem to 
minimize social costs, in which the allocation of the optimal 
stations was determined by capturing the competitive and 
strategic behavior. Vazifeh et al. [23] proposed a modeling 
and optimization framework that could determine the effec-
tive deployment of charging stations to minimize the total 
energy consumption and the over-the-road driving distance 
from EV users to charging stations. However, this solution 
ignored factors such as load density, traffic density, and 
solution space closure. In addition to the above-mentioned 
shortcomings, these previous works also have the follow-
ing situations. 1) Some works only consider the location of 
charging stations without considering the number of charg-
ers [24–26, 37], while others only consider the number of 
chargers without considering the location of the charging 
stations [27–29]. None of these works can meet the needs 
of energy companies. 2) The obtained results created a seri-
ous overlap between the XFC station's service areas. 3) The 
positioning algorithms were often inefficient in the previous 
works.

3  Methodology

In this section, we try to solve the problem of the optimal 
deployment of XFC stations. The MDDC is proposed to 
solve this problem, which is shown in Algorithm 1. In the 
MDDC, we first use the grid partitioning method to divide 
the EV distribution map into subgrids, which can reduce 
the service range of the XFC station. In the following, we 
model the problem of minimizing the number of XFC sta-
tion deployments and use heuristic algorithms to solve the 
problem. XFC station deployment location optimization 
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Algorithm 1  MDDC Algorithm
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rules within the same clique are introduced afterward to 
optimize XFC station deployment. In addition, to further 
improve user satisfaction and the utilization of the XFC 
station, we propose Minimum dIstance Sum of Unique 
Public area location (MISUP) in the MDDC to shorten the 
calculation time and accurately obtain the optimal deploy-
ment location of the XFC station.

3.1  Determining the best charging area for the XFC 
station

In this paper, the distribution map covers a large area in a 
real environment, so we assume that the number of electric 
vehicles in each distribution map is the same and their 
position is variable. During data processing, our goal is to 
determine the number and variance of EVs in each sub-
grid. In Ω/ξ electric vehicle distribution maps within a 
period Ω selected with ξ as the time interval, we use the 
grid partitioning method to narrow the area of the XFC 
station service area. The total area is represented by 
R = {b1

1
,… bθ

1
,… , b1

Ω∕�
,… bθ

Ω∕�
} , where bθ

Ω∕�
 is the �th grid 

in the Ω/ξ distribution map. We consider the areas that 
always contain electric vehicles as candidate key areas, 
i.e., Pimportant . However, there are some Pimportant areas that 
contain too few electric vehicles to reflect the application 
value of XFC stations that provide charging services in 
this area. Therefore, we need to select Pimportant to obtain 
grids with high coverage and a stable number of EVs. To 
achieve this goal, we first calculate the average value of 
electric vehicles (i.e., Ei ) contained in grid i in the Ω/ξ 
electric vehicle distribution map by Eq. (1).

where aij is the number of electric vehicles included in grid 
i , which is in the j th electric vehicle distribution map. p 
is the number of electric vehicle distribution maps, and p 
= Ω/ξ.

We use variance as the main measure to explain the 
dynamic change process of electric vehicles in continuous 
time. In the Ω/ξ EV distribution maps, the average value 
of the number of EVs contained in all grids is averaged 
to obtain Emean , as shown in Eq. (2). We require that the 
service areas of the selected XFC stations achieve not only 
large-scale EV coverage but also the stability of the num-
ber of EVs covered in this area. Therefore, it is necessary 
to exclude grids with a low variance but containing a small 
number of EVs, i.e., we need to exclude a class of grids 
that meet E(i) < Emean . Then, we calculate the variance 
(i.e., S2

i
 ) of the EV number distribution of the remaining 

grids i by Eq. (3).

(1)E(i) =

∑p

j=1
aij

p
,

We sort the obtained distribution variance S2
i
 from small 

to large and select the grid corresponding to the first L vari-
ances as the filtered key areas (i.e., Pimportant ). As a result, a 
large number of electric vehicles are always distributed in 
Pimportant . Therefore, using the XFC station for charging in 
Pimportant can improve the utilization rate of the XFC station.

3.2  Minimizing the number of XFC stations

In this paper, we consider the problem of maximizing the 
coverage of XFC stations based on minimizing the number 
of XFC stations. Under this optimization goal, electric vehi-
cles in Pimportant always show a dense distribution. As shown 
in Eq. (4), the service area D of the XFC station is further 
reduced in this area,

where D∩ = {D∩1,D∩2, ...,D∩s} represents the intersection of 
the range of all electric vehicles in Pimportant , and s represents 
the number of electric vehicles in Pimportant . The range of all 
electric vehicles in Pimportant that do not have any intersection 
with any electric vehicle in the area can be obtained by Eq. 
(5). b represents the number of electric vehicles that do not 
have an intersection with any electric vehicle in Pimportant,

As shown in Fig. 1, we use the node ID to construct the 
adjacency matrix. The value of the diagonal of the adjacency 
matrix is 0. If the driving ranges of the two nodes intersect, 

(2)Emean =

∑�

i=1
E(i)

�
,

(3)S2
i
=

(E(i) − ai1)
2 + (E(i) − ai2)

2 + ... + (E(i) − aij)
2

j
.

(4)D = D∩ ∪ Dal,

(5)Dal =
{
Dal1

,Dal2
, ...,Dalb

}
.

ID 1 2 3 4 5

1 0 1 2 3 -

2 1 0 4 5 -

3 2 4 0 6 -

4 3 5 6 0 -

5 - - - - 0

4

1

2

3

4

5

7

5

1

2

3

Fig. 1  Deployment area D identification diagram
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the value is Di . If the driving ranges of the two nodes do not 
intersect, the value is represented by "-". We use 5 nodes to 
explain the deployment area D, of which { N1 , N2 }, { N1 , N3 }, 
{ N1 , N4 }, { N2 , N3 }, { N2 , N4 }, and { N3 , N4 } have intersec-
tions, which are D1 , D2 , D3 , D4 , D5 , and D6 . As a result, 
D∩ =

{
D1,D2,D3,D4,D5,D6

}
 . However, N5 does not have 

an intersection with other nodes in the figure, whose scope 
is the deployment area D7 , and Dal = {D7}.

According to the calculation, the reduced deployment 
range D of the XFC station is a region set. For any element 
Dj in the set, we know the electric vehicle set Gj covered in 
the D region based on Eq. (6),

where |N| is the total number of electric vehicles in the 
2-dimensional area, and di is the range of electric vehicles 
Ni . According to Eq. (7), it can be seen that the set of electric 
vehicles in the deployment area together constitutes all the 
electric vehicles in the Pimportant area,

For electric vehicles in the Pimportant area, this paper 
defines a matrix of |G| × |D| . These matrix elements are cij , 
which are obtained by Eq. (8),

To determine the final deployment area, we define the 
binary decision variable xj by Eq. (9),

To solve the problem of maximizing the coverage of XFC 
stations based on the minimum number of XFC stations, 
the optimization function to minimize the number of XFC 
stations deployed in the Pimportant area is shown in Eq. (10),

where i ∈ {1, 2, ..., |G|} , j ∈ {1, 2, ..., |D|} , xj ∈ {0, 1} , 
cij ∈ {0, 1} , and |D| is the number of candidate deployment 
areas. As shown in Eq. (11), the constraint objective of the 
optimization function is to ensure that all electric vehicles 
in the Pimportant area belong to the charging range of at least 
one XFC station. This problem is a binary integer linear 
programming problem and also an NP-hard problem [40]. 
Therefore, we solve the problem of maximizing XFC station 

(6)Gj = ∪
|N|
i=1

{
i|di ∩ Dj ≠ ∅

}
,

(7)G = ∪
|D|
j=1

Gj.

(8)cij =

{
1 i ∈ Gj

0 otherwise
.

(9)xj =

{
1 if Dj is the f inal deployment area

0 if Dj is not the f inal deployment area
.

(10)���
∑|D|

j=1
xj,

(11)Subject to
∑|D|

j=1
cijxj ≥ 1,

coverage with the minimum number of XFC stations based 
on a heuristic algorithm.

The essence of the maximum coverage of the XFC sta-
tion is to find the minimum number of XFC stations in the 
Pimportant area to ensure that all electric vehicles in the area 
are covered by the charging range of the XFC station. In this 
paper, the problem of maximizing the coverage of the XFC 
station is transformed into a clique partitioning problem 
with low complexity. The clique partitioning problem refers 
to finding the minimum number of cliques that can divide a 
graph. Each clique represents a certain set of vertices, and 
any two vertices in a clique are connected by edges. There-
fore, an undirected graph G(V, E) is constructed accord-
ing to the distances of all electric vehicles in the Pimportant 
region. Each vertex in the graph represents a point in the 
electric vehicle set G in the Pimportant region. If the distance 
between two EVs does not exceed twice the driving range 
of the EV, then an edge is connected between these two 
points. The original problem can be transformed into an 
undirected graph composed of all electric vehicles in the 
Pimportant region to find the minimum number of cliques that 
can divide the undirected graph by using clique partitioning. 
The clique partitioning problem is NP-hard. Many heuristic 
algorithms can obtain approximate solutions to this problem 
in linear time. We use the heuristic algorithm proposed by 
Tseng et al. [41] to solve this problem. The main steps of 
the heuristic algorithm are described as follows:

1) For an undirected graph G(V, E), we first extract the 
pair of vertices ( w1,w2) with the most common neigh-
bors. If there are multiple vertex pairs with the same 
maximum number of common neighbors in the graph, 
then we select the vertex pairs with the fewest edges to 
delete. If the number of edges to be deleted for merging 
these vertex pairs is the same, then choose a vertex pair 
arbitrarily.

2) Combine the selected vertex pair ( w1,w2) into one vertex 
w1.

3) Edge deletion. There are three types of edges to be 
deleted: a: the edge connected between w1 and w2 ; b: 
the edges corresponding to the vertices with smaller 
index numbers in w1 and w2 are deleted from the edges 
of the vertex pair connected to the common neighbor; 
c: if there is a vertex in the graph, and the vertex is con-
nected to only one vertex in the vertex pair, then delete 
the edge. After the edges are deleted, the undirected 
graph is updated.

4) Repeat the above three steps on the new undirected 
graph until there are no edges in the graph.

In the above algorithm, the process of merging vertices 
is the construction process of different cliques. As shown in 



Peer-to-Peer Networking and Applications 

1 3

Fig. 2, we use an example to describe the clique partitioning 
algorithm. We first select the pair of vertices with the most 
common neighbors (2, 4) to merge and then delete the edges 
corresponding to the vertices with smaller index numbers to 
form a new undirected graph. In the new undirected graph, 
the common neighbors of all vertex pairs are zero, so the 
vertex pair with the fewest edges needs to be selected. This 
process is repeated until there are no edges in this graph. The 
original graph is divided into 5 cliques, which are {1, 2, 4}, 
{3}, {5, 8}, {6}, and {7}.

3.3  XFC station deployment optimization rules 
in the same clique

We consider that there are more complex intersections 
between the range of electric vehicles in a clique. To deter-
mine the specific deployment location of the XFC station, 
we optimize the specific deployment of the XFC station for 
three special situations to achieve the optimal deployment 
of the minimum number of XFC stations, thereby reducing 
the initial investment of the energy company. These rules 
can also minimize the overlapping coverage between XFC 
station service areas.

1) As shown in Fig. 3a, if the electric vehicles belonging to 
the same clique are in a unique public area, we consider 
the centroid of the unique public area as the deployment 
location of the XFC station.

2) There is a special situation where the scope of electric 
vehicles intersects, as shown in Fig. 3b. The scope of 
the three electric vehicles forms three public areas, and 
these 3 public areas intersect at one point. If we use the 
previous rule, two XFC stations will be deployed. How-
ever, for this situation, we can deploy the XFC station at 
the intersection Q of three public areas and replace the 
original two XFC stations with one, thereby reducing 
the number of XFC stations required.

3) As shown in Fig. 3c, there is no unique public area for 
electric vehicles belonging to the same clique. The four 
electric vehicles N1 , N2 , N3 and N4 intersect with each 
other. N1 , N2 and N3 have a unique public area �1 , and 
electric vehicle N4 does not intersect with the public 
area. In this case, if XFC stations are still deployed in 
the public area, three XFC stations are needed, namely, 
�1 (i.e., public area of N1 , N2 , N3 ), �2 (i.e., public area of 
N1 , N2 , N4 ) and �3 (i.e., public area of N2 , N3 , N4 ). We 
consider the deployment of XFC stations in the public 
areas �2 and �3 , which have a greater effect on electric 
vehicles N4 and are not necessary for N1 , N2 , and N3 . 
Therefore, for this situation, we consider isolating one 
electric vehicle from the clique and then observing 
whether there is a unique public area for the remain-
ing electric vehicles. If there is a unique public area, 
the XFC station will be deployed at the centroid of the 
unique public area and within the scope of the isolated 
electric vehicle. As shown in Fig. 3c, we first isolate the 
electric vehicle N4 , find that N1 , N2 and N3 have a unique 

Fig. 2  Example of clique parti-
tioning process
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public area �1 , and then deploy the XFC station at the 
centroid of �1 and within the range of electric vehicle 
N4 . We can simplify the three XFC stations originally 
needed to deploy two based on this rule. However, if 
the unique public area is not found after isolating one 
electric vehicle, we need to continue to select another 
electric vehicle for isolation and repeat the process until 
the unique public area is found.

3.4  Redetermining the XFC station deployment 
location

The optimization rules in Sect. 3.3 can be used to establish 
an equation for calculating the number of final XFC stations, 
as shown in Eq. (12)

where XFCSNumber represents the final number of charg-
ing stations. UPA represents the unique public area obtained 
through the deployment optimization rules of XFC stations 
in the same clique. Len(UPA) is the number of unique public 
areas in the two-dimensional space. AN is a node that does 
not belong to any unique public area in a clique, which is 
defined as an alone node. Len(AN) represents the number of 
alone nodes in the two-dimensional space.

For the alone node, the deployed charging station only 
needs to be within its scope. In contrast, for the unique 

(12)XFCSNumber = Len(UPA) + Len(AN),

public area, we need to optimize the deployment location 
of the charging station. We know that the deployment loca-
tion of the XFC station is the centroid of the area or the 
only intersection of the area in Sect. 3.3. We average the 
finite number of coordinates on the boundary of the unique 
public area to determine the centroid coordinates to obtain 
the deployment position of the XFC station in Eq. (13). 
We define this method as the Unique public area Location 
Method (ULM),

where CSLocationX  and CSLocationY  represent the 
abscissa and ordinate of the charging station respectively. 
CSNodeNumber represents the number of nodes belong-
ing to the current unique public area. If the unique public 
area belongs to only one node, the node coordinates ( XNode

, YNode ) are used to represent the deployment location of the 
XFC station. When the number of nodes belonging to the 
unique public area exceeds 1, there will be a unique public 
area in the clique. We divide the area boundary into 360 
copies and calculate the average of the coordinates of the 
boundary points; then, the position of the XFC station is 
( 
∑360

i=0
Xi

360
 , 
∑360

i=0
Yi

360
).

(13)

⎧⎪⎪⎨⎪⎪⎩

CSLocationX =

� ∑360

i=0
Xi

360
,CSNodeNumber > 1

XNode,CSNodeNumber = 1

CSLocationY =

� ∑360

i=0
Yi

360
,CSNodeNumber > 1

YNode,CSNodeNumber = 1

,

Fig. 3  Schematic diagram of 
optimization rules
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To further improve user satisfaction and the utilization 
of the XFC station, we optimize the total path length by 
minimizing the length of the path that each electric vehicle 
travels to the XFC station serving it, (i.e., there is an XFC 
station coordinate that satisfies the minimum total distance 
to the server node). We assume that the coordinates of the 
electric vehicle nodes are 

(
x1, y1

)
,⋯ ,

(
xn, yn

)
 . The position 

of the charging station that satisfies the minimum total dis-
tance in the current unique public area can be obtained by 
Eq. (14) [42]. We name this method the Minimum distance 
sum Method (MM),

where x and xi represent the abscissa of the electric vehicle. 
y and yi represent the ordinate of the electric vehicle. MM 
can accurately find the target deployment location through 
Eq. (14), but its search speed will be affected by the search 
step size and search space size. Moreover, the deployment 
location of the XFC station determined by the ULM can only 
satisfy the deployment location of the XFC station within 
the unique public area. However, the ULM can obtain solu-
tions quickly. Therefore, we combine the accurate MM with 
the fast ULM to determine the deployment location accu-
rately and quickly. We define this method as the Minimum 
dIstance Sum of a Unique Public area location (MISUP).

4  Experimental evaluation

4.1  Data initialization

This paper first verifies the method in Sect. 4.2 by using 
fewer than 200 randomly distributed EV nodes in 500 m × 
500 m area. In addition, we randomly distribute 4000 elec-
tric vehicles in 2000 m × 2000 m area to verify our scheme in 
Sects. 4.3, 4.4, and 4.5. Then, we use MATLAB to generate 
10 node topological maps to represent Ω/ξ electric vehicle 
distribution maps. The relationship between EVs also forms 
a network. In addition, the node topological map and the EV 
distribution map are mapped to each other, where Ω is the 
total evaluation time and ξ is the unit evaluation time. Dif-
ferent data are represented by the data ID. We use a square 
grid with a unit grid side length of d = 100 m to divide the 
node topological maps into integer grids. The range di of 
electric vehicles with the same remaining battery power and 
the charging range ri of the XFC station are both 50

√
2 m.

4.2  MDDC performance verification

To ensure the rationality and validity of the experimental 
results, we use small-scale data to verify the performance 

(14)min
∑n

i=1

√(
x − xi

)2
+
(
y − yi

)2
.

of the method in this paper. In the grid partitioning stage, 
to exclude a class of grids with a stable number of EVs 
but containing fewer EVs, the average EV contained in 
each grid in the Ω∕ξ electric vehicle distribution maps is 
first calculated. Then, we average the averages of all the 
grids in the distribution maps and exclude the grids whose 
grid average E(i) is less than the overall average Emean (i.e., 
excluding a class of grid that meets E(i) < Emean ). However, 
excluding the grid may affect EV node coverage. Therefore, 
we introduce the factor beta into the exclusion grid equa-
tion (i.e., E(i) < beta ∗ Emean ) to evaluate the effect of the 
remaining grids on the coverage of the EV node to determine 
the optimal beta value applicable in the current scenario. In 
this paper, we choose beta = 1 . In addition, to determine 
that the selected grid has high stability, we calculate the 
variance of the remaining grids, sort them from small to 
large to select the first L grids as candidate XFC station 
service areas. Next, we introduce the factor alpha to adjust 
the number of L (i.e.,L = alpha ∗ N(RemainedGrid) , where 
N(RemainedGrid) is the number of remaining grids) to eval-
uate the effect of L on the coverage of EV nodes, so we can 
determine the optimal alpha value suitable for the scene. 
As shown in Figs. 4 and 5, although beta and alpha are the 
same, the coverage under different unit grid side lengths 
usually changes. Therefore, we need to choose the appropri-
ate unit grid side length during the partitioning process. In 
addition, as the value of beta decreases, the node coverage 
rate increases. This is because as beta decreases, the number 
of remaining grids gradually increases. However, when beta 
is too small, we cannot exclude a grid that contains fewer 
EV nodes, so this cannot reflect the value of the XFC sta-
tion. Therefore, it is very important to select a suitable beta . 
With the increase in alpha , the coverage of EV nodes shows 
an upward trend. The larger alpha is, the more service areas 
are selected as candidate XFC stations, so we choose alpha 
= 1 for the next experiment.

Many heuristic algorithms can be used to solve the clique 
partitioning problem. However, there are differences in per-
formance between different algorithms. Two heuristic algo-
rithms proposed by Tseng et al. [41] and Khelldi et al. [43] 
were classic solutions used to solve the clique partitioning 
problem. Therefore, we need to evaluate them to determine 
which algorithm to choose as our solution. As shown in 
Fig. 6, the former is better than the latter in terms of the 
number of cliques and processing time, so we choose the 
former to solve the clique partitioning problem in this paper.

The MM is used to determine the points that satisfy the 
minimum distance sum of four points (i.e., (0,0), (50,0), 
(50,50), and (0,50)) to evaluate the effect of the search step 
on the search time and error in a search space of size 50 
m × 50 m. As shown in Fig. 7, as the search step length 
increases, the search time decreases rapidly and then flat-
tens, while the error increases gradually and then increases 
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rapidly. Therefore, we know that choosing a reasonable 
search step is especially critical. When the search step 
size is 0.1, the search time and accuracy of the MM can be 
guaranteed. Therefore, the search step used in this paper is 
0.1. In addition, we also evaluated the effect of search area 

size on the MM. As shown in Fig. 8, as the search area 
increases, the search time of the MM search time increases 
rapidly. When the search area is too large, it will seriously 
affect the running efficiency of the program. Therefore, 
we consider optimizing the search space size of the MM 

Fig. 4  The effect of unit grid 
side length and beta on cover-
age
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Fig. 5  The effect of unit grid 
side length and alpha on cover-
age
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to reduce the algorithm search time. We consider combin-
ing the fast ULM and accurate MM to design the MISUP 
to overcome the shortcoming of slow MM search speed. 
We need to verify the performance of MISUP. As shown 
in Fig. 8, as the search space increases, the search time of 
MISUP does not increase significantly. Compared with the 

MM, the search time of MISUP is greatly reduced. There-
fore, we can use MISUP to obtain the XFC station deploy-
ment location that meets the conditions in a short time.

In addition, we use the GA to solve the optimal deploy-
ment location of the charging station [8]. The relevant 
parameter settings of the GA algorithm used are shown in 

Fig. 6  Comparison of two 
heuristic algorithms
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Table 1. The optimization results in this paper are coordi-
nates, so two binary-encoded DNAs need to be defined, 
where one represents the abscissa and the other represents 
the ordinate. The GA is first evaluated in a 500 m × 500 m 
search space. As shown in Fig. 9, after the genetic generation 
reaches 440 generations, the average and best fit results tend 
to be stable and approximately equal. This shows that the 
GA has found a solution that meets the conditions. There-
fore, it only needs to iterate 440 generations to obtain appro-
priate results in the experiment.

To compare the performance of the MM, MISUP, and GA 
in the process of redetermining the position of the XFC sta-
tion, we need to compile statistics on the final results. We first 
calculate the sum of the distance from each XFC station to 
the served node after processing. Then, we calculate the sum 
of the distances from all XFC stations in the two-dimensional 
space to the EVs they serve. As shown in Fig. 10, the results 
are obtained when the number of EV nodes is 80. The dis-
tance between XFC station IDs {1, 2, 3, 4, 5, 6} is small and 
equal. The result corresponds to the case of the alone node 

or the case where there is only one subordinate node in the 
unique public area. The other XFC station IDs correspond to 
the case where the number of subordinate nodes in the unique 
public area is greater than 1. It can be seen in the results that 
under the current conditions, the performance of MISUP is 
better than the other two methods, and the worst case is equal 
to the other two methods. As shown in Fig. 11, the results 
show that the distance sum generated by using MISUP is 
always less than or equal to the GA and ULM.

In the following, the performance of MDDC is verified, 
we use the Euclidean algorithm and the A-Star algorithm 
to calculate the distance between two nodes. We determine 
the relationship between the distance between two nodes 
and the radius of the range to which the EV node belongs 
(i.e., if the distance is less than 2 times the range radius, 
the return result is 1; otherwise, it is 0) and map the results 
to the adjacency matrix. We use heuristic algorithms to 
perform clique partitioning operations on the adjacency 
matrix to achieve the clustering of EV nodes. Then, we 
use the optimization rules in the same clique to process 
the clustering results to obtain the minimum number of 
XFC stations required. As shown in Fig. 12, using opti-
mization rules in the same clique to optimize the results 
after clique partitioning processing can greatly reduce the 
number of XFC stations deployed and reflect the rational-
ity and effectiveness of the rules. We evaluate the effect of 
different distance calculation methods on the results. The 
experiments show that under the influence of multiple fac-
tors, the final results have the same fluctuation trend and 

Fig. 8  Relationship between 
search space and search time
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Table 1  Related Parameters of GA

Parameter Value

Population 100
Cross Probability 0.8
Mutation Probability 0.00
Search Space Size 500 m × 500 m
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similar results, which shows that the method in this paper 
has good robustness. In addition, we compare our method 
(MDDC) with the method in Rajabi-Ghahnavieh et al. 
[37]. The obtained data were processed with tenfold cross-
validation. The final results show that the performance 
before MDDC optimization is worse than the comparison, 
and the performance after MDDC optimization is better 
than the comparison. This is because the results before 
the optimization of the MDDC mainly consider achieving 

full coverage of the nodes in the key area without focus-
ing on overlapping coverage. The optimization goal in the 
comparison scheme is to minimize the cost and use genetic 
algorithms to solve the problem, so overlapping coverage 
can be reduced. However, we often obtain a locally opti-
mal solution in the GA. In contrast, the optimization rules 
proposed in this paper can always eliminate the problem 
of overlapping coverage to the greatest extent, so the opti-
mized MDDC can obtain the optimal results.

Fig. 9  Relationship between 
the number of iterations and the 
fitness value

0 50 100 150 200 250 300 350 400 450 500

Generation

1400

1420

1440

1460

1480

1500

1520

1540

Fi
tn

es
s 

va
lu

e

Best
Mean

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 211 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0

100

200

300

400

500

600

700

800

Si
ng

le
XF

C
st

at
io

n
m

in
di

st
an

ce
su

m
(m

)

XFC station ID

MISUP
ULM
GA

Fig. 10  Sum of distance from single XFC station to service node

10 16 20 30 40 50 60 70 80
0

1000

2000

3000

4000

5000

XF
C
st
at
io
n
m
in

di
st
an

ce
su

m
(m

)

Number of Node

MISUP
ULM
GA

Fig. 11  The sum of the distance from all XFC stations to the EV 
nodes they serve



 Peer-to-Peer Networking and Applications

1 3

4.3  Analysis of the minimum number of XFC 
stations required under different data types

We determine the Pimportant area in different EV distribution 
maps under different data and construct the correspond-
ing undirected graph. Then, we apply the MDDC method 
to find the minimum number of XFC stations required 
on different undirected graphs. As shown in Fig. 13, the 
minimum number of XFC stations required under different 
data is compared. We find that the number of XFC sta-
tions obtained under uniform distribution data is greater 
than the Poisson distribution and Gaussian distribution. 
This is because the EV distribution in the Pimportant area 
for different data under the uniform distribution data is 
more scattered than the Poisson distribution and Gaussian 
distribution. Therefore, the number of edges in an undi-
rected graph based on the range of electric vehicles in the 
uniform distribution is less than the Poisson distribution 
and Gaussian distribution, and the correlation between 
elements is not as strong as the Poisson and Gaussian dis-
tributions. Nodes with strong correlation will be divided 
into the same clique, so the number of XFC stations finally 
obtained from the data under uniform distribution is more 
than the Poisson distribution and Gaussian distribution. 
As shown in Fig. 14, the average number of XFC stations 
required under different data distributions shows that the 
Gaussian distribution is significantly lower than the uni-
form distribution.

4.4  Analysis of the feasibility of minimizing the XFC 
station optimization method

The clique partitioning algorithm can only divide electric 
vehicles into different cliques. The specific deployment loca-
tion of the XFC station depends on the distribution of the 
electric vehicle. Taking data ID2 as an example, as shown 
in Fig. 15, the number of cliques obtained by applying the 
clique partitioning algorithm is much smaller than the num-
ber of XFC stations required before optimization based on 
the ID2 data, which obeys uniformly distributed data. This 
is because the distribution locations of electric vehicles in 
the same clique are complex, and there is an intersection 
between any two nodes. However, since the electric vehicles 
in the same clique are relatively scattered compared to the 
Poisson and Gaussian distributions, the elements are weakly 
related. As a result, it is difficult to find a unique public 
intersection to deploy the XFC station in a clique. Before the 
optimization, the XFC stations are deployed in all intersec-
tions existing in the same clique. Many common intersec-
tions belonging to the scope of multiple electric vehicles 
can be found, thereby reducing the number of XFC stations 
required by optimization. In the Poisson distribution and 
Gaussian distribution of data, the distributions of electric 
vehicles are highly correlated, and the number of cliques 
divided is less than the uniform distribution. For electric 
vehicles in the same clique, the probability of finding a com-
mon intersection belonging to the range of multiple electric 

Fig. 12  Comparison of the 
number of XFC stations under 
different methods and scenarios 
using different calculations 
distance methods

0 50 250 300100 150 200
UnitGridSideLength(m)

70

60

50

40

30

20

10

0

80

90

100

110
MDDC with Euclidean Initial Result
MDDC with Astar Initial Result
Rajabi-Ghahnavieh et al.[37] with Euclidean
Rajabi-Ghahnavieh et al.[37] with Astar
MDDC with Euclidean Optimal Result
MDDC with Astar Optimal Result

MDDCCC with Euclideaan Initial Resullt
MMDDDDCCC wiitthh AAsttar IInniittiiall RResulltt
Rajabbii-Ghahnavieh et al.[37] with Euclidean
Rajabbii-Ghahnavieh et al.[37] with Astar
MDDCC with Euclideaan Opptimal Reesult
MDDCCC with Astar OOptimal Result

N
um

be
r o

f X
FC

 S
ta

tio
ns



Peer-to-Peer Networking and Applications 

1 3

Fig. 13  Comparison of the 
minimum number of XFC sta-
tions required under different 
data types
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vehicles is large, so the number of XFC stations required 
before and after optimization does not change much.

4.5  Analysis of the impact of charging range ri 
and the range di of EV based on minimizing XFC 
stations

The charging range ri of the XFC station and the range di of 
the electric vehicle may affect the minimum number of XFC 
stations required. To verify the impact of these two factors 
on the results, we used uniformly distributed data to change 
the coverage of the XFC station and the range of electric 
vehicles to observe its impact on the minimum number of 
XFC stations required. As shown in Table 2, as the range of 
electric vehicles increases, the number of minimum required 
XFC stations gradually decreases, which indicates that the 
range di has a negative correlation with the number of mini-
mum required XFC stations. At the same time, it can be 
seen that the larger the coverage area of the XFC station is, 
the fewer the minimum number of XFC stations required. 
This is because, with a larger coverage area for the XFC sta-
tion, which can cover both the electric vehicles in the clique 
and a small number of electric vehicles in other cliques, the 

impact on reducing the number of XFC stations is small. 
The method proposed in this paper is only applicable when 
ri ≥ di since the core concept of the MDDC method is to 
convert the NP-hard problem into a clique partitioning prob-
lem. When constructing an undirected graph, the condition 
for constructing edges between any two nodes is that the 
nodes belong to the intersection range, which also deter-
mines that the structure of the undirected graph is affected 

Fig. 15  Comparison of the 
number of XFC stations 
required before and after opti-
mization
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Table 2  The Influence of EV Range on Minimum Number of XFC 
Stations Required

EV Range di (m) XFC Station Coverage
ri = 50 (m)

XFC 
Station 
Coverage
ri = 70 (m)

10 98 96
20 92 89
30 87 85
40 80 80
50 73 73
60 - -
70 - 65
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by the range di . If di > ri , the deployment of the XFC station 
in the public area of the clique will not be able to cover all 
electric vehicles in the clique, which is unreasonable.

5  Conclusion

In this paper, we determine the locations of XFC stations 
based on the dynamic location change process of EVs. We 
first use ten electric vehicle distribution maps to approximate 
the dynamic location changes of EVs. The grid partitioning 
method is used to reduce the service area of the XFC sta-
tion. An optimization function with a heuristic algorithm is 
designed to minimize the number of XFC stations required, 
which can determine the minimum number of XFC stations 
required to cover all electric vehicles in the service area 
of the XFC station. According to the range of EVs in the 
service area of the XFC stations, the XFC station deploy-
ment optimization rules are designed in the same clique, 
which can reduce overlapping coverage between XFC sta-
tion service areas to optimize the XFC station deployment. 
In addition, to improve user satisfaction and the utilization 
of the XFC stations, we redetermined the deployment loca-
tion of the XFC stations with the minimum distance sum as 
the optimization goal. MISUP is designed in the MDDC to 
accurately determine the target deployment location of the 
XFC stations in a short time. Finally, we verified the effec-
tiveness, rationality, and robustness of the MDDC and evalu-
ated its performance through simulation experiments. The 
results show that the MDDC outperforms the comparison 
algorithm by 54.2% and 52.0% when using the Euclidean 
algorithm and the A-star algorithm, respectively.
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